The Autonomous Economic Fabric: How Onchain AI is Redefining Economic Boundaries

Gordon Liao

August 3, 2025

Chief Economist & Head of Research, Circle

Defining the Onchain Al Agent

What is it?

An autonomous software entity using AI on a blockchain to execute decisions, manage assets, and interact within a decentralized environment.

Why it matters?

- Al provides scalable intelligence, reducing cognitive scarcity.
- Blockchain provides trustless coordination, reducing relational scarcity.

The New Economic Primitive: The Onchain Al Agent

Key Properties

- Economic Autonomy:
 Autonomous agents that hold, use, and transact crypto assets to execute decisions onchain.
- Verifiable: Actions are immutably logged on the blockchain.
- Composable: Can interact with other smart contracts and agents.

Revisiting Coase & The Nature of the Firm (1937)

Why do firms exist?

To minimize transaction costs when markets are inefficient.

The Coasean Boundary

$$C_{\rm market} > C_{\rm firm}$$

Where C_{market} represents market transaction costs (search, bargain, enforce) and C_{firm} represents internal coordination costs.

Market Transaction Costs (T_C)

- \bullet T_{search} : Cost of finding counterparties and information.
- ullet T_{bargain} : Cost of negotiating terms and contracts.
- T_{enforce}: Cost of monitoring and enforcement.

Onchain Al Agents Drive Transaction Costs to the Limit

Transaction	Pre-Agent	Post-Agent Mechanism
Cost	Mechanism	
T_{search}	Manual search,	Autonomous querying of
	brokers, RFPs	Onchain registries. Cost $ ightarrow$
		0
$T_{bargain}$	Lengthy human	Programmatic interaction
	negotiation	with smart contracts. Cost
		ightarrow gas fee
$T_{ m enforce}$	Legal system, ar-	Atomic settlement; crypto-
	bitration	graphic certainty. Enforce -
		ment is automatic.

When $T_C \to 0$, the Coasean rationale for the firm weakens. Economic activity can be coordinated by a network of specialized agents.

Tackling Information Asymmetry

The Market for "Lemons"

(Akerlof, 1970)
Asymmetric information leads to adverse selection, where low-quality goods ("lemons") drive out high-quality goods ("peaches"). This asymmetry also underpins the principal-agent problem for

firms.

Onchain Agents as the Solution

- Immutable History: Agent actions are auditable onchain.
- Al-Powered Analysis: Agents process vast on- and off-chain data (via oracles).
- Cryptographic Proofs: zk can prove an agent's model output is valid without revealing the model.
- Incentivizing Truth: Agents stake value on predictions, creating info markets (Futarchy).

Case Study: Moving Towards Market Completeness

The Theory: Arrow-Debreu Securities

A market is **complete** if a security exists for every possible future state of the world.

These theoretical *Arrow-Debreu* securities allow for perfect risk transfer and optimal allocation of capital, but are impractical to create in traditional markets.

The Practice: Onchain Agents

- Prediction Markets
 approximate these securities
 for discrete events.
- Onchain Al Agents can act as automated market makers and analysts for these markets.
- By analyzing risk and providing liquidity, they dramatically lower the cost of creating state-contingent claims, pushing the economy towards completeness.

The New Equilibrium: An Autonomous Economic Fabric

Key Characteristics

- Hyper-specialization: Agents perform narrow, optimized tasks with superhuman efficiency.
- Composability: Agents and protocols combine like building blocks, creating emergent systems.
- Radical Efficiency: Automation of complex workflows reduces overhead and transaction costs.
- New Role for Humans: Focus shifts to design, governance, and strategic oversight.

The Frontier: Open Research Questions

Key Research Challenges

- Agent-on-Agent Security: Modeling and preventing complex collusion or adversarial behavior.
- Value Alignment & Control: How to ensure an agent's objective function (max(U)) remains aligned with human intent over long time horizons?.
- The Verifiability Trilemma: Balancing on-chain verifiability, computational complexity (for powerful AI), and low cost.
- Robustness & The Oracle Problem: Accessing high-fidelity, tamper-proof off-chain data.
- Regulatory & Legal Voids: Defining the legal personality and tax status of a sovereign AI agent.

Conclusion

- 1. Onchain Al Agents are a new **economic primitive**.
- 2. They attack transaction costs, dissolving firm boundaries.
- 3. They resolve **information asymmetry** via data transparency and verifiable compute.
- 4. The result is a nascent **Autonomous Economic Fabric**.

Thank You

Gordon Liao gordon@circle.com @GordonLiao (Twitter/X)